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1
Progress Report

1.1 Introduction

X-ray diffraction contrast tomography (DCT) is a nondestructive characterization method providing

access to the three-dimensional grain microstructures in a wide range of polycrystalline materials. DCT

is a truly three-dimensional tomographic imaging approach, sharing a common experimental setup with

conventional X-ray microtomography. After interaction with the material, both the transmitted and

diffracted beams are recorded on a high-resolution X-ray imaging detector positioned close to the sample.

The three-dimensional distribution of the X-ray attenuation coefficient, and the three-dimensional shape,

grain average orientation and elastic strain tensor of all grains in the illuminated sample volume, are

determined from analysis of the transmitted and diffracted intensities, respectively

DCT analysis of polycrystalline materials is currently a hot topic at synchrotron radiation facilities

around the globe. The monochromatic nature of a synchrotron beam, its parallel beam geometry,

and its high spatial resolution make it an ideal imaging modality to measure three-dimensional grain

microstructures in a wide range of polycrystalline materials. The combination of three-dimensional X-ray

imaging and diffraction techniques on the same instrument are particularly interesting for the study of

deformation and damage mechanisms in structural materials [1, 2, 3], but current applications cover a

much wider spectrum, including phase transformations and grain coarsening processes.

Fig. 1.1 showcases the combined use of (synchrotron) X-ray phase contrast and X-ray diffraction con-

trast tomography for characterization of fatigue crack propagation in metal alloys. The 3D dimensional

grain microstructure of a bcc Ti alloy sample has been mapped out with DCT prior to an in-situ fatigue

experiment carried out on the same specimen. The combined characterization enables characterization

and interpretation of crack orientation and crack growth rate as a function of local crystallographic

orientation [2].

However, given the high operating cost and their limited availability, synchrotron facilities often

do not provide a feasible solution. It would, therefore, be very beneficial if DCT imaging were to be

possible on conventional table-top µCT systems that are relatively cheap and more widely available. The

downside of such a lab source CT system is its cone beam geometry and the polychromatic nature of its

X-ray source. This results in complicated software simulations of diffraction projections (and thus also

their reconstruction), which are difficult to implement efficiently on modern computational infrastructure

such as GPU’s.

In this work, an accurate and efficient projection model is introduced for the case of polychromatic

cone beam DCT. In Section 1.2, the forward and backprojection model of this projector is mathematically

introduced and its efficient implementation is discussed. Subsequently, in Section 1.3, these projectors

are used to reconstruct a grain of an Aluminium Copper microstructure, scanned in a µCT system.

Section 1.4, finally, concludes this work and provides an outline into future research directions that could

greatly benefit the application of DCT in lab source systems.
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1.2. CONE BEAM DCT PROJECTOR

Figure 1.1: (a-c) 3D rendition of a fatigue crack in a Ti alloy reconstructed from phase contrast tomography (PCT)
after 46, 61 and 75 *103 loading cycles. The color corresponds to the vertical crack position. (d) 3D rendition of
the combined data set showing the crack and the surrounding 3D grain microstrucutre as determined from DCT. (e)
Surface mesh representing the fracture surface, colour coded with respect to its crystallographic orientation. Grain
boundaries are labelled in white. (f,g) Crack propagation within the grain labelled in (e). The activated (110) slip
plane and the two (111) slip directions are highlighted in gray and black, respectively.

1.2 Cone beam dct projector

In this section, a projector is introduced that simulates the diffraction images of grains in a lab source

cone beam µCT-system. We assume that the diffraction spots have already been indexed and that for

each of the grains the center of mass and crystallographic orientation has been determined. For details

on the indexing procedure for polychromatic DCT data we refer to the article by [4]. Note that the

number of projection images per grain depends on material and experiment parameters but is typically

of order of one hundred.

In Section 1.2.1, necessary notation is introduced regarding the volume and projection geometry of

polychromatic cone beam diffraction contrast tomography (henceforth referred to as LabDCT ). Section

Section 1.2.2 and Section 1.2.3 subsequently introduce the back- and forward projection respectively.

Finally, in Section 1.2.4, we discuss some implementation details that were required to optimise to

projector performance.

For the sake of readability, we refrain from delving too deep into the mathematics of the projection

models. Instead, we refer to Appendix A where more in-depth derivations are provided for many of the

formulas presented in this section.

1.2.1 Notation

Any tomographic projection model is defined by both a volume geometry, defining the reconstruction

volume, and a projection geometry, defining the trajectory and orientation of the X-ray source and

detector1 with respect to the volume. In Fig. 1.3, a schematic overview is given of a lab source CT

system for diffraction tomography.

For the volume geometry, define n as the total number of voxels and ∆v ∈ N as the voxel length per

direction. For simplicity’s sake, we assume isotropic voxels.

1 In the remainder of the presentation we will refer to individual detector pixels as detectors and we will use the term
detector system when referring to the full array (2048x2048 elements) of detectors.

2
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1.2. CONE BEAM DCT PROJECTOR

Figure 1.2: Schematic showing the laboratory DCT setup. The technique, originally developed for the case of a
monochromatic, parallel synchrotron beam can be adapted to conventional X-ray laboratory tomography scanners
with minimal modifications: a set of adjustable slits is inserted between source and sample.
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Figure 1.3: Schematic overview of a 3D cone beam diffraction tomographic geometry.

For the projection geometry, we define m as the total number of detectors per projection and l as

the total number of projections. The total number of measurements is then m̄ = ml. Let ∆t ∈ R denote

the width and height of the square detectors. Each projection is defined by a set of five vectors: let

S ∈ R3 denote the position of the source point, D0 ∈ R3 the position of the centre of the detector plane,

U ∈ R3 the unit vector that defines the x-dimension of a detector (‖U‖ = ∆t), V ∈ R3 the unit vector

that defines the y-dimension of a detector (‖V ‖ = ∆t), and G ∈ R3 the grain lattice plane normal giving

rise to the diffraction spot. Note that any detector point can be expressed by D = D0 + t1U + t2V with

t1, t2 ∈ N.

1.2.2 Backprojection

For the backprojection operation in LabDCT, only a voxel-driven projection approach can result in the

fastest implementations. This means that for each voxel centred at point P , and for each projection

image defined by S and D0, we must simulate the diffraction of the incoming ray and compute the

intersection D of the diffracted ray with the detector plane (see Fig. 1.4). Let the inverse incoming ray

be defined by the vector Kin = P − S. Given the law of ray reflection, the outgoing ray, Kout can then

found by

Kout = 2G(G · −Kin) +Kin.
�� ��1.1

The equivalence of Eqn. 1.1 to Bragg’s law is given in Appendix A.

3
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1.2. CONE BEAM DCT PROJECTOR
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Figure 1.4: Scheme of diffraction in lab source ct, as used for backprojection. Simplified to 2d fan beam.

The detector D can then be found by computing the intersection between the outgoing ray and the

detector plane:

P + sKout = D = D0 + t1U + t2V,
�� ��1.2

where s, t1, t2 ∈ R can be found by solvingKout,x −Ux −Vx
Kout,y −Uy −Vy
Kout,z −Uz −Vz

 s

t1
t2

 =

D0x − Px

D0y − Py

D0z − Pz

 .
�� ��1.3

Detailed information on how to efficiently solve Eqn. 1.3 can be found in appendix A.

1.2.3 Forward projection

Here, a forward projection operator is discussed for use in LabDCT. For computational reasons, forward

projecting requires a ray-driven projector. Given a certain detector point, we must thus figure out which

voxels in the volume contribute exactly how much to it. For conventional absorption CT, this is easy

to figure out as all contributing points lie on a straight line. Rather, for diffraction tomography, these

points (i.e. those in which the incoming ray diffracts exactly into the direction of the detector) are on

a curved line (henceforth referred to as the diffraction curve), requiring more complicated projection

equations.

In Section 1.2.3.1, we will introduce formulas that define the diffraction curve for the special case

where the source and a given detector are on the x-axis of a 2-dimensional coordinate system, and are

located such that their distance to the origin is equal. Given these severe restrictions, we can make use

of the property of ellipses saying that any ray originating in one focal point, reflecting on the edge of the

ellipse, will end up in the other focal point.

Subsequently, in Section 1.2.3.2, a transformation formula is introduced that allows the special ellipse-

based diffraction curve to be used in a general 3D LabDCT cone beam setting.

4
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1.2. CONE BEAM DCT PROJECTOR
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Figure 1.5: A subset of the ellipses with their centre in the origin and with fixed focal points f = ±200. The thick
red line connects all points on these ellipses where the corresponding tangent line is perpendicular to the plane normal
(the pink line).

1.2.3.1 Ellipse diffraction model

Consider the set of ellipses with its centre in the origin, their axes aligned with those of the Cartesian

grid and with fixed focal points ±f with f2 = a2 − b2 and 0 ≤ b < a.

x2

a2
+
y2

b2
= 1.

�� ��1.4

Given the in depth derivation given in appendix A, we can see that all points x, y that lie on such an

ellipse and whose tangent line at that point of the ellipse is perpendicular to the diffraction normal G,

can be described as a function of a:

x = ± a2|Gx|√
a2 − f2G2

y

, y = ± sgn(Gx)b2Gy√
a2 − f2G2

y

.
�� ��1.5

The diffraction curve can also be described as a function of x:

y =
Gy

Gx
x− 2f2GxGy

x±
√
x2 − 4f2G2

xG
2
y

.
�� ��1.6

In Fig. 1.5 an example set of ellipses is shown that conform to Eqn. 1.4 with f = ±200. It also shows

all points x, y of the diffraction curve (Eqn. 1.5) for a ∈ R+.

1.2.3.2 Cone beam geometry

Now that we know the diffraction curve for the case where the source and detectors are located on

the focal points of ellipses centred on the origin, we introduce a transformation such that each source,

detector pair in volume coordinates is convert into ellipse coordinates such that these restrictions apply.

Given are a source point S and detector point D. The focal points, ±f , of all ellipses is half the

Euclidean distance between source and detector:

f =
‖SD‖2

2
=

1

2

√
(Dx − Sx)2 + (Dy − Sy)2 + (Dz − Sz)2.

�� ��1.7

With f known, the source and detector points can be expressed in ellipse coordinates:

S′ = (−f, 0) D′ = (f, 0) .
�� ��1.8
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1.2. CONE BEAM DCT PROJECTOR
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Figure 1.6: Two-dimensional simplification of the transformation between the a volume coordinates (full lines) and
ellipse coordinates (dotted lines).

The plane normal in ellipse coordinates, G′, can be described by the angle θ between G and the vector, B,

from the halfway point between the source and the detector, to the detector (i.e. B = D− S+D
2 = S−D

2 ).

From the definition of the dot product, we learn that

cos θ =
B ·G
‖B‖‖G‖

=
B ·G
f

.
�� ��1.9

Given sin2 θ + cos2 θ = 1, sin θ can be also be computed without performing a costly trigonometric

function. The plane normal in ellipse coordinates is thus:

G′ =
(
g,
√

1− g2
)
, with g =

1

f
(BxGx +ByGy +BzGz) .

�� ��1.10

If it is assumed that G′ is not parallel to D′ (which means the ray will never hit the detector anyway),

the vectors G′ and D′ provide a basis for the ellipse coordinate system and each point P ′ can be described

by a linear combination of these vectors:

P ′ = αD′ + βG′

P ′x = αf + βG′x, P ′y = βG′y

β =
P ′y
G′y

, α =
P ′x − βG′x

f

�� ��1.11

Furthermore, note that the transformation of G′ and D′ into volume coordinates (i.e. G and B) provides

a basis for all diffraction points in volume coordinates with the origin at O = S+D
2 . Because the

transformation from ellipse to volume coordinates involves translation and rotation, but no scaling, the

linear combination of these base vectors in the ellipse coordinate system is equal to the corresponding

set of base vectors in the volume coordinate system, i.e.

P = O + αB + βG.
�� ��1.12

This means that we now have the means to transform the LabDCT projection of any source-detector

pair into the simplified geometry of Section 1.2.3.1 (with Eqn. 1.10), where the diffraction curve can

be easily computed. With Eqn. 1.12, this curve can be reconverted into the actual volume coordinates,

leading to a forward projection.

6
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1.2. CONE BEAM DCT PROJECTOR

1.2.3.3 Sampling based projector

Figure 1.7: Scheme depicting a two-dimensional simplification of volume sampling along a certain diffraction curve.

Now that formulas for the diffraction curve are available, we can use them to create a ray-driven

forward projection strategy. We have found that from a computational point of view, the best projection

method is to sample the volume along the diffraction curve Eqn. 1.6 at a certain interval (see Fig. 1.7).

With such methods, the sampling interval should be as regular as possible. In the case of the diffraction

curve however, the derivative of the curve is not constant and if it were to be sampled with a fixed ∆x

or a fixed ∆y, it is likely to be severely undersampled when its slope is very steep.

Instead, note that for each value of x (with f < x < −|2fGxGy|), a unique value of a can be

associated, and that a increases as x increases (This is only true for x < 0. However, because we can

assume that the reconstruction volume is much closer to the source than it is to the detector, the case

where x > 0 can be ignored). One could thus also sample the curve by slowly increasing ∆a, which offers

a much more even sampling strategy. This has the added benefit that the projection can be computed

using Eqn. 1.5, which is substantially more computationally efficient than Eqn. 1.6. 2

Given 0 < a0 ≤ f a certain starting value, compute its corresponding point, P0, on the diffraction

curve. Next, add ∆a to a0 and compute its corresponding point P1. Before P1 is ”looked” up in the

volume image and added to the detector value, its weight has to be computed. This weight should

be the inverse of the curve length between P0 and P1. Because it is not possible to compute this

efficiently, one simplification can be to use the Euclidean distance between the two points. If ∆a is

chosen sufficiently small, this simplification should not result in large errors. Keep adding ∆a to a and

repeat the computations until the diffraction curve does not lie in the volume any more.

As an additional improvement, one can adaptively update ∆a by dividing it by the distance between

the last two points (i.e. the weight associated to the last point). This will ensure that the distance from

this point to the next will be approximately equal to the distance between this point and the previous,

obviously resulting in an a much smoother sampling of the curve.

In Fig. 1.8, the LabDCT forward projector is summarized in pseudo code.

1.2.3.4 Some optimizations

We have done research into the further improvement of the performance of the forward projection opera-

tion. We noticed that in the typical setup, the reconstruction volume lies much closer to the source than

to the detector and is very small relative to the source detector distance. Furthermore, for grains to be

visible on the detector plane, the plane normal of the projection is typically close to perpendicular to the

incoming rays. This means that the curvature of the portion of the diffraction curve that falls inside the

region of interest, is typically very low. We have thus found that the curve can be approximated with a

straight line without a substantial loss in accuracy.

2Note that in Eqn. 1.6 the computational burden appears to lie mostly with the reciprocal square root. Fortunately,
however, on nVidia GPU’s the reciprocal square root is implemented as a hardware instruction, and thus requires only one
clock cycle to compute.
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1.3. EXPERIMENT

a := a0 such that P0 lies inside the volume

P ′
0x := −a2|Gx|/

√
a2 − f2G2

y ; P ′
0y = −sgn(Gx)b2|Gy |/

√
a2 − f2G2

y ;

β := P ′
0y/G

′
y ; α := (P ′

0x − βG′
x)/f ;

P0 := O + αB + βG;
a := a+ ∆a;
w h i l e P0 is inside the volume

P ′
1x := −a2|Gx|/

√
a2 − f2G2

y ; P ′
1y = −sgn(Gx)b2|Gy |/

√
a2 − f2G2

y ;

β := P ′
0y/G

′
y ; α := (P ′

0x − βG′
x)/f ;

P1 := O + αB + βG;
w := ‖P1 − P0‖2;
v := lookup value of the volume at point P1;
projection := projection+ wv;
P0 := P1;
∆a := ∆a/w; (optional)
a := a+ ∆a;

end

Figure 1.8: Pseudo code for sampling-based LabDCT forward projector.

Assume that the grain falls entirely inside a sphere centred in point C ∈ R2 with radius r ∈ R. One

can then compute the intersection of this sphere with the diffraction curve Eqn. 1.5. One can then draw

a straight line between these two points, sampling them at a fixed interval.

1.2.4 Implementation details

In this work, multiple implementations of the previously discussed projector were created. Initial proto-

typing development was done fully in MALTAB. Later on, a C++ implementation was created where the

computational efficiency was optimized. In this, the inherent parallelism of the projectors was exploited

with the OpenMP framework. To even further decrease the computation time, also an NVIDIA CUDA

implementation was created. In it, parallelism is exploited even more ad GPU specific techniques such

as texture memory are used to increase the speed of bicubic interpolation and random memory lookups.

Both the C++ and the CUDA versions are part of the ASTRA framework. For now, access to

this code is restricted to the partners of this project. There is, however, the option to include these

projectors in a future open source release of the ASTRA toolbox. At the time of writing, the code is

already deployed on a computation cluster at the ESRF, Grenoble, France.

1.3 Experiment

For validation of the projector introduced in Section 1.2, we consider a experimental dataset acquired on

the laboratory X-ray tomography setup at MATEIS, INSA Lyon. The instrument (manufacturer: RX

Solutions, France) is equipped with a Hamamatsu microfocus X-ray source. The source was operated at

60 keV acceleration voltage and a 5µm thick tungsten transmission target. The images were recorded

on a CCD detector (ESRF Frelon camera) featuring a 2048 × 2048 pixel array and a dynamic range of

14 bits. The backilluminated CCD sensor is fibre-optically coupled to a 100 m thick fluorescent screen

(GadOx). The pixel size of the detector system was 50 microns. The centre of rotation of the tomographic

rotation stage was positioned at a distance of 36 mm from the source and the detector was positioned at

a distance of 220 mm from the source. This resulted in an effective pixel size of about 8 microns, taking

into account the cone beam magnification. A set of adjustable slits were inserted between the sample

and the source in order to limit direct X-ray exposure to the central part of the detector field of view

(figure 1.2). Two scans were recorded from the same sample — a DCT scan optimized for detection of

the weak diffraction signals and a conventional absorption scan. For the DCT scan, a 1 mm thick copper

sheet was placed as an absorber over the area of the detector exposed to the direct beam, in order to

8

Distribution A:  Approved for public release; distribution is unlimited.



1.3. EXPERIMENT

Figure 1.9: Slice of the absorption reconstruction of the AlCu dataset. Highlighted is the grain that is used in the
subsequent experiments.

avoid saturation of the detector system.

The sample was made from a binary Al Cu alloy (5 weight percent copper) which was thermo-

mechanically processed in a way to produce large Al grains ( 500 microns) partly surrounded by a

copper rich Eutectic phase. A slice of the absorption reconstruction of this dataset is shown in Fig. 1.9.

One reason we chose this dataset is that the individual grains can be more or less seen in the absorption

reconstruction, allowing us to create a manual three-dimensional segmentation of the grain shapes. Note

that while it is tempting to refer to such a segmentation as a ”ground truth”, the fact that it was created

by manually delineating the borders of the grain on a slice-by-slice basis, means that it should only be

used as a rough guideline of the exact grain shape. A more accurate segmentation may be obtained using

advanced morphological image segmentation techniques (watershed algorithm).

Following the procedure outlined in [4], a number of grains were identified (indexed) from the LabDCT

dataset. In what follows, we describe two experiments that we did with the data from one of those grains

which could be identified both in the absorption reconstruction (i.e. a grain delineated by the Eutectic

phase) and indexed during processing of the diffraction data.

First, in Section 1.3.1, we show a reconstruction that we did of a phantom volume, based on the

manually segmented grain volume. Secondly, in Section 1.3.2 we attempt to reconstruct the same grain,

with the actual experiment data.

1.3.1 Phantom experiment

Firstly, we consider the manual segmentation we created of the grain highlighted in Fig. 1.9, a slice of

which is shown in Fig. 1.10a. Of this volume, we simulated the diffraction spots with the same projection

geometry (i.e. the same directions) as the experimentally recorded dataset. With this projection data,

we computed a reconstruction, shown in Fig. 1.10b. As reconstruction algorithm, we used 50 iterations of

SIRT with minimum constraints (i.e. after each SIRT iterations, all negative values in the reconstructed

are put to zero).

While there are some clearly visible streaks in the reconstructed image, the general outline of the

grain is reconstructed very well.

1.3.2 Real data experiment

Secondly, we created a SIRT reconstruction of the experimental data. This time, we opted for only

10 iterations, as we noticed a decreasing reconstruction quality when, due to noisy projection data,

doing more iterations. A slice of the reconstruction is shown in Fig. 1.11b, where it is also compared

9
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1.3. EXPERIMENT

(a) manual segmentation (b) reconstruction

Figure 1.10: (a) Slice of the manually segmented grain (Fig. 1.9) (b) Reconstruction of (a) computed from 162
simulated diffraction spots with the same geometry as the dataset of Fig. 1.9.

(a) approximation [4] (b) LabDCT (Section 1.2) (c) approximation [4] (d) LabDCT (Section 1.2)

Figure 1.11: (a) Reconstruction slice with an approximated projector [4]. (b) Reconstruction slice with the projector
introduced in Section 1.2. (c,d) Volume rendering of the full volumes of (a) and (b) respectively.

(Fig. 1.11a) to the reconstruction obtained with the previously published approach in which regular cone

beam projectors were used and the diffraction geometry was approximated by some afffine transformation

of the projection images [4].

Clearly, the method presented in this work much better approximates the shape of the grain as it is

visual in the absorption reconstruction (Note that the shown slices in Fig. 1.11a, Fig. 1.11b and Fig. 1.9

are not exactly the same).

We also compared the computational efficiency of the different implementations of the projectors.

In Fig. 1.12, timings are shown for the forward and backprojection and for a 10 iteration SIRT recon-

struction. The computations were performed on an Intel Quad Core i7-2760 CPU running at 2.40GHz

and on an NVIDIA Quadro 2000M GPU (note that this is only a laptop GPU, with a modern high

end GPU we expect a further speedup by a factor of 2). An enormous computational improvement was

obtained by implementing the projector in C++ instead of in MATLAB code. While this was indeed

expected, it must be noted, however, that the MATLAB implementation is not fully optimized for speed

and the comparison is thus unfair. Overall, however, it is clear that for the best performance, GPU

computing is the way to go. With features such as fast texture interpolation and memory lookup, the

GPU architecture is excellently suited for projectors such as ours, and vice versa.
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1.4. OUTLOOK AND CONCLUSIONS

implementation FP BP SIRT (10 iters)

MATLAB 896.40s 2128.12s 32514.11s
C++ 5.89s 28.10s 382.64s
CUDA 0.45s 0.69s 13.78s

Figure 1.12: Projection and reconstruction timings for the different implementations.

1.4 Outlook and conclusions

In this work we have developed an efficient projector for laboratory based, polychromatic cone beam

diffraction imaging. Using this projector, the three-dimensional shape of grains with negligible intra-

granular orientation gradient can be reconstructed using iterative, algebraic reconstruction techniques

(e.g. SIRT). The reconstructions show a clear improvement compared to the previously used processing

route, based on a regular cone beam projector and affine transformation of the projection images.

Further validation and evaluation of the new projector will become possible after sucessfull indexation

of the majority of the grains in the illuminated sample volume - currently only about 40 percent of the

sample volume has been indexed. Where this document only provides a visual confirmation of the

accuracy (partly delineation of the grain boundaries by the Eutectic phase), quantiative evaluation will

be possible after having scanned the same sample on a synchrotron beamline using the well established

monochromatic, parallel beam approach.

We expect that further improvement of the reconstruction quality can be obtained from more ac-

curate estimation of the projection geometry. Currently, the plane normals, defining the direction of

the diffracted beam are derived from the orientation matrix, determined during the indexing procedure.

Due to incertainties in the global setup parameters, this initial estimate of the orientation is not 100

percent accurate, which results in blurry reconstructions. This problem is closely related to projection

misalignment, common to other applications such as electron tomography.

The logic continuation of the current work, aiming at further improvement of the grain shape recon-

structions is along the following lines:

Grain refinement The initial estimate of grain center of mass position and orientation as provided

by the indexing routine has to be refined. However, the refinement of grain parameters can only

be successful if the global setup parameters like detector position and tilt of the rotation axis are

refined at the same time. Therefore, a multiparameter fitting procedure, based on the full set of

diffraction spot metadata is required (estimated time: 1-2 months for implementation and testing).

Alternatively, grain reconstructions could be improved on a grain by grain basis. Recently, at the

Vision Lab (Antwerp, Belgium), a state-of-the-art alignment correction method for tomography

was developed (not yet published). We are confident that the underlying principles of this method

can also be used to improve the plane normal estimations, which is likely to lead to sharper recon-

structions of individual grains, albeit not solving the underlying problem of a slightly inaccurate

initial position and orientation estimate of the grain.

Intragranular orientation gradients One of the principal limitations of polychromatic cone beam

DCT is its restriction to materials exhibiting negligible levels of intragranular orientation spread.

In the current work we have assumed that the direction of the diffracting plane normal is constant

throughout the entire grain volume. In practise, this condition is rarely fulfilled and already

small deviations of order of a few tenths of a degree of intragranular orientation spread can give

rise to significant distortion of the diffraction spots and will lead to rapid degradation of the

accurary of grain shape reconstructions. It can be expected that a 6-dimensional reconstruction

framework, as currently developed for the case of monochromatic beam DCT [5], will be able

to improve the quality LabDCT reconstructions, as well. Since this method is computationally

expensive, the fast GPU implementation developed in the current work may be considered as a
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prerequiste and first step in this direction. However, the polychromaticity of LabDCT implies that

the additional information encoded into the ω (rotation angle) spead of the individual diffraction

spots, observed in the monochroamtic beam variant, is lost. As a first step, the stability and

applicability of such a 6-D reconstruction framework has to be tested on synthetic data created

from a phantom grain with known orientation distribution. If successfull the application to real data

and validation with cross-sectional EBSD and / or synchtrotron measurements can be envisaged.

The time required for adapting the 6-dimensional reconstruction framework to LabDCT (creation

of test cases, optimization of the algorithm and model , validation) is estimated to be of order of

6 months.

Source spectrum In this work, we have assumed that the polychromatic X-ray source has a constant

energy spectrum. In practice this may not be the case and strong peaks (characteristic emission

lines of the X-ray target material) can be present in the spectrum. This means that within a single

diffraction spot, which typically covers a small range of different energies, the contribution from

different grain sub-volumes may be highly non-uniform. Assuming the source spectrum is known

a priori, one may attempt to extend the current projection model such that this non-constant

spectrum is taken into account. While this is likely to decrease the computational efficiency of

the projection, it may be beneficial to its accuracy. As first step, we intend to perform software

simulations in order to evaluate the impact of the source spectrum on the reconstruction quality. If

these simulations indicate a strong influence, we will proceed with the implementation of projectors

and algorithms, taking this effect into account.

To summarize, we have implemented and validated a projector for LabDCT which enables us to per-

form accurate 3D grain shape reconstructions in materials exhibiting negligible intra-granular orientation

spread. With further improvement of polycrystal indexing algorithms and with extension to a 6D re-

construction framework, we anticipate LabDCT to become a true alternative to established synchrotron

techniques. The combination of absorption (detection of damage, second phases, porosity, plastic strain

via 3D digital volume correlation techniques) and diffraction imaging (crystal shape and orientation,

elastic strain) on the same instrument will provide unique possibilities for (interrupted) in-situ charac-

terization of dynamic processes in the bulk of polycrystalline materials (e.g. grain coarsening during

heat treatment, plastic deformation and damage mechanisms, others...)

References

[1] A. King, G. Johnson, D. Engelberg, W. Ludwig, and J. Marrow, “Observations of intergranular stress corrosion

cracking in a grain-mapped polycrystal.,” Science, vol. 321, no. 5887, pp. 382–385, 2008.

[2] M. Herbig, A. King, P. Reischig, H. Proudhon, E. M. Lauridsen, J. Marrow, J.-Y. Buffière, and W. Ludwig,

“3d growth of a short fatigue crack within a polycrystalline microstructure studied using combined diffraction

and phase contrast x-ray tomography,” Acta Materialia, vol. 59, pp. 590–601, 2011.

[3] W. Ludwig, A. King, P. Reischig, M. Herbig, E. M. Lauridsen, S. Schmidt, H. Proudhon, S. Forest, P. Cloetens,

S. R. d. Roscoat, J. Y. Buffière, T. Marrow, and H. F. Poulsen, “New opportunities for 3D materials science

of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray

imaging,” Materials Science and Engineering: A, vol. 524, pp. 69–76, 2009.

[4] A. King, P. Reischig, J. Adrien, and W. Ludwig, “First laboratory X-ray diffraction contrast tomography for

grain mapping of polycrystals,” Journal of Applied Crystallography, vol. 46, pp. 1734–1740, Dec 2013.
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2
Appendix

2.1 Backprojection

2.1.1 Link to Bragg’s law

G

Kin Kout

θ

α

Figure 2.1: Diffraction direction according to Bragg’s law.

In DCT, the direction of the diffraction is defined by the Laue equation, which is equivalent to

Braggs’s Law:

G = Kout −Kin,
�� ��2.1

where ‖Kout‖ = ‖Kin‖, and ‖K‖ = 1 (see Fig. 2.1). Here, we derive the equivalence to Eqn. 1.1. Given

the incoming angle α, the norm of Kout and Kin can be easily found:

1 = ‖G‖ = 2‖Kin‖ cosα = 2‖Kin‖ sin θ,

‖Kin‖ =
1

2 sin θ
.

�� ��2.2

We then get:

Kout = 2G(G ·Kin) +Kin

= 2G(‖G‖‖Kin‖ sin θ) +Kin

= 2G(
1

2 sin θ
sin θ) +Kin

= G+Kin

�� ��2.3
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2.2. FORWARD PROJECTION, ELLIPSE MODEL

2.1.2 Solving Eqn 1.3

Given the equation D0 + t1U + t2V = P + sKout, here we discuss how to efficiently find s, t1, t2 ∈ R.

First, find s by computing the intersection between the line P + sKout and the detector plane:

s =
(D0 − P ) ·N
Kout ·N

,
�� ��2.4

where N is the normal to the detector plane, i.e. N = U × V . Note that N can be precomputed for

computational efficiency.

The value for t1 can subsequently be computed, depending on the value for Ux:

t1 =

{
Vz(Px−D0x+sKout,x)−Vx(Pz−D0z+sKout,z)

UxVz−UzVx
if Ux 6= 0

Vz(Py−D0y+sKout,y)−Vy(Pz−D0z+sKout,z)
UyVz−UzVy

if Uy 6= 0
.

�� ��2.5

Note that we don’t consider the case where Ux = Uy = 0. However, because U represents the unit vector

for a column on the detector plane, we can assume that at least one of Ux and Uy is non-zero. For the

same reason we can also assume that Vz 6= 0, leading to the following equation for t2:

t2 =
Pz −D0z + s ∗Kout,z − t1 ∗ Uz

Vz

�� ��2.6

2.2 Forward Projection, Ellipse model

Consider the set of ellipses with its center in the origin, their axes aligned with those of the Cartesian

grid and with fixed focal points ±f with f2 = a2 − b2 and 0 ≤ b < a.

x2

a2
+
y2

b2
= 1.

�� ��2.7

Given a certain point x0, y0 on such an ellipse, the slope of the tangent line of the ellipse at that point

can be found by implicit differentiation along x:

b2x2 + a2y2 = a2b2

d

dx

(
b2x2 + a2 + y(x)2

)
= 0

2b2x+ 2a2y
dy

dx
= 0.

The slope of the tangent line, mt, is thus

mt =
dy

dx
= − b

2

a2
x

y
.

�� ��2.8

We are now looking for points x0, y0 where the tangent line is perpendicular to the diffraction normal,

whose slope is defined by mg =
Gy

Gx
:

mtmg = −1

b2

a2
x0
y0

Gy

Gx
= 1
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2.2. FORWARD PROJECTION, ELLIPSE MODEL

This gives rise to a line through the origin, that intersects the ellipse exactly at the two points where its

tangent curve is perpendicular to the normal vector:

a2Gxy = b2Gyx

y =
b2

a2
Gy

Gx
x =

b2

a2
mgx

�� ��2.9

Now, given a certain x0, we wish to know y0 for which the previous equations hold. This can be done

by computing the intersection between Eqn. 2.9 and the ellipse Eqn. 2.7, which is1:

x0 = ± ab√
a2

b4m2
g

a4 + b2
= ± a√

b2m2
g

a2 + 1

= ± a√
m2

g −
f2m2

g

a2 + 1
= ± a√

1
G2

x
− G2

yf
2

G2
xa

2

= ± a2|Gx|√
a2 − f2G2

y

,�� ��2.10

y0 = ± ab√
a2

b4m2
g

a4 + b2

b2

a2
mg = ± a2b2|Gx|Gy

Gxa2
√
a2 − f2G2

y

= ± sgn(Gx)b2Gy√
a2 − f2G2

y

.
�� ��2.11

Given that the volume will always lie much closer to the source than to the detector, we are only interested

in points for which x0 < 0. Thus,

γ = − 1√
a2 − f2G2

y

, x0 = a2|Gx|γ, y0 = sgn(Gx)Gy(f2 − a2)γ.
�� ��2.12

With x0 given and b easily computable with b2 = a2− f2, Eqn. 2.12 can be solved for the two remaining

unknowns (y0 and a). From Eqn. 2.10, a2 can be found:

x20 =
a4G2

x

a2 − f2G2
y

0 = G2
xa

4 − x20a2 + f2G2
yx

2
0

Solving for a2, one gets

a2 =
1

2G2
x

(
x20 ± x0

√
x20 − 4G2

xG
2
yf

2
)
.

�� ��2.13

With a2 known and b2 = a2−f2, Eqn. 2.9 can be used to represent the diffraction curve y0 as a function

of x0:

y0 =
b2

a2
mgx0 = mgx0 −

f2

a2
mgx0

=
Gy

Gx
x0 −

f2Gyx0
1

2G2
x

(
x20 ± x0

√
x20 − 4G2

xG
2
yf

2
)
Gx

=
Gy

Gx
x0 −

2f2GxGy

x0 ±
√
x20 − 4f2G2

xG
2
y

.
�� ��2.14

It should be noted that if

x20 < 4f2G2
xG

2
y ⇐⇒ |x0| < |2fGxGy|,

�� ��2.15

1http://mathworld.wolfram.com/Ellipse-LineIntersection.html
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2.2. FORWARD PROJECTION, ELLIPSE MODEL

a2 will be a complex number, meaning that for these x0 values, no ellipse exists where the tangent slope

at x0 is perpendicular to G. This property can be used to define limits to where the curve should be

computed.

Also note that both Eqn. 2.12 and Eqn. 2.13 feature 1
Gx

. This is a potential cause for severe floating

point errors if Gx is very small. In that case, the plane normal is close to perpendicular to the incoming

ray and the diffraction will be infinitesimally small.
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